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The multiple pairs shortest path problem (MPSP) arises in many applications where the shortest paths and
distances between only some specific pairs of origin-destination (OD) nodes in a network are desired. The

traditional repeated single-source shortest path (SSSP) and all pairs shortest paths (APSP) algorithms often do
unnecessary computation to solve the MPSP problem. We propose a new shortest path algorithm to save com-
putational work when solving the MPSP problem. Our method is especially suitable for applications with fixed
network topology but changeable arc lengths and desired OD pairs. Preliminary computational experiments
demonstrate our algorithm’s superiority on airline network problems over other APSP and SSSP algorithms.
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Introduction
The multiple pairs shortest path (MPSP) problem on
a network is to compute the shortest paths for q spe-
cific origin destination (OD) pairs �si� ti�, i = 1� � � � � q.
This problem arises often in multicommodity net-
works (Barnhart et al. 1995) such as telecommunica-
tion and transportation networks. In this paper, we
propose a new algorithm that saves computational
work when compared to the methods currently used
to solve MPSP problems. Our algorithm is especially
effective when shortest paths between specific sets of
OD pairs have to be repeatedly computed using dif-
ferent arc costs.
During the last four decades, many good shortest

path algorithms have been developed. We can group
shortest path algorithms into three classes: (1) those
that employ combinatorial or network traversal tech-
niques such as label-setting methods (Dijkstra 1959,
Dantzig 1960, Dial 1965), label-correcting methods
(Ford 1956, Moore 1957, Bellman 1958, Pape 1974),
and their hybrids (Glover, Glover, and Klingman
1984); (2) those that employ linear programming
(LP)-based techniques like the primal network sim-
plex method (Goldfarb, Hao, and Kai 1990; Goldfarb
and Jin 1999) and the dual ascent method (Bertsekas,
Pallottino, and Scutellà 1995; Pallottino and Scutellà
1997); and (3) those that use algebraic or matrix tech-
niques such as Floyd-Warshall (Floyd 1962, Warshall
1962) and Carré’s (1969, 1971) algorithms. The first
two groups of shortest path algorithms are mainly
designed to solve the single-source (or sink) shortest
path (SSSP) problem, which is the problem of comput-
ing a shortest path tree for a specific source (or sink)

node. Algebraic shortest path algorithms, on the other
hand, are more suitable for solving the all pairs short-
est paths (APSP) problem, which is the problem of
computing shortest paths for all the node pairs.
Currently, SSSP and APSP algorithms are used to

solve MPSP problems. Obviously, the MPSP prob-
lem can be solved by simply applying an SSSP algo-
rithm �q times, where �q is the size of a minimum node
cover on an appropriately defined bipartite graph.
Given the set N of nodes in the MPSP network, the
bipartite graph includes two copies of each node: one
representing that node’s use as an origin and one
representing its use as a destination. For each required
shortest path, the bipartite graph includes an arc from
the node representing the path’s origin to the node
representing its destination. The minimum node cover
on this bipartite graph (i.e., the minimum set of nodes
that includes at least one endpoint of each arc) cor-
responds to the minimum number of SSSP calls nec-
essary to solve the MPSP problem. More specifically,
any origin node i included in the node cover corre-
sponds to using SSSP to find a tree of shortest paths
out of i, and any destination node j included in the
node cover corresponds to using SSSP to find a tree
of shortest paths into j . Because this method requires
many calls to SSSP, we call such methods repeated
SSSP algorithms.
It is easy to see that repeated SSSP algorithms are

more efficient for MPSP problems with small node
covers (i.e., �q � n). However, for cases with larger
node covers, both the APSP and SSSP methods may
involve more computation than necessary. To cite an
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extreme example, suppose that we want to obtain
shortest paths for n OD pairs, �si� ti�, i = 1� � � � �n,
which correspond to a matching on N × N . That is,
each node appears exactly once in the source and sink
node set. For this specific example, we must apply
an SSSP algorithm exactly n times, which is as hard
as solving an APSP problem. Both the APSP and
SSSP methods are “overkill” in that they waste com-
putational effort by finding shortest paths for many
unwanted OD pairs in the process.
The MPSP problem can also be solved by apply-

ing an algebraic APSP algorithm once and extracting
the desired OD entries. Algebraic APSP algorithms
are closely related to path algebra, an algebraic system
that is applicable to several path-finding problems
(Carré 1971; Backhouse and Carré 1975). The opera-
tors �⊕� ⊗� null� e� in path algebra have the following
meanings: a⊕ b means min�a� b�; a⊗ b means a+ b;
null (i.e., 0) means 	, and e (i.e., identity) means 0.
In particular, the APSP problem can be interpreted
as determining the n × n shortest distance matrix
X = �xij � that satisfies X =CX⊕ In (Carré 1971), where
C = �cij � is the n×n measure matrix storing the length
of arc �i� j� and In is the identity matrix. In other
words, X =CX⊕ In is exactly Bellman’s equation: For
each node pair �i� j�, xij =mink 
=i� j �cik+xkj� if i 
= j , and
xij = 0 if i= j . Techniques analogous to Gauss-Jordan
and Gaussian elimination (direct method) correspond
to the well-known Floyd-Warshall and Carré’s algo-
rithms, respectively (see Carré 1971 for proofs of their
equivalence). The decomposition algorithm proposed
by Mills (1966) (also, see Hu 1968) decomposes a large
graph into parts, solves APSP for each part separately,
and then reunites the parts. All of these methods have
O�n3� time bounds and are believed to be efficient for
dense graphs (Ahuja, Magnanti, and Orlin 1993).
The problem of inverting a matrix is closely related

to a series of matrix powers. In particular, the optimal
APSP distance matrix X∗ = Cn−1. Aho, Hopcroft, and
Ullman (1974, pp. 202–206) showed that computing
Cn−1 is as hard as a single-distance matrix squaring,
which takes O�n3� time. Fredman (1976) proposed an
O�n2�5� algorithm to compute a single-distance matrix
squaring but required a program of exponential size.
Its practical implementation, improved by Takaoka
(1992), still takes O�n3��log logn�/ logn�1/2�, which is
just slightly better. Recently, much work has been
done in using block decomposition and fast matrix
multiplication techniques to solve the APSP problem.
These new methods, although they have better sub-
cubic time bounds, usually require the arc lengths
to be either integers of small absolute value (Zwick
1998) or can only be applied to unweighted, undi-
rected graphs (Seidel 1995; Galil and Margalit 1997).
All of these matrix multiplication algorithms seem to
be more suitable for dense graphs because they do

not exploit sparsity. However, their practical efficiency
remains to be evaluated.
Carré’s algebraic APSP algorithm (1969, 1971) uses

Gaussian elimination to solve X = CX ⊕ In. After
a LU decomposition procedure, Carré’s algorithm
performs n applications of forward elimination and
backward substitution procedures. In turn, each for-
ward/backward operation gives an optimal solu-
tion to one column of X, which corresponds to an
ALL-1 shortest-distance vector. This decomposabil-
ity of Carré’s algorithm makes it more attractive for
MPSP problems than the Floyd-Warshall algorithm.
In this paper, we propose an algebraic algorithm

designed specifically for the MPSP problem, inspired
by Carré’s APSP algorithm. When solving MPSP
problems, our algorithm avoids unnecessary opera-
tions that other algorithms must perform. Preliminary
computational experiments show that our algorithm
performs well and is faster than state-of-the-art SSSP
and APSP algorithms.
This paper contains four sections. Section 1 intro-

duces some definitions and basic concepts. Section 2
presents our MPSP algorithm (DLU ) and proves its
correctness. Section 3 demonstrates classes of MPSP
problems in which our algorithm saves computa-
tional effort compared with APSP and repeated SSSP
algorithms, and contains computational results that
demonstrate the superiority of our algorithm for air-
line network problems. Section 4 concludes our work
and proposes future research.

1. Preliminaries
For a digraph G != �N�A� with n = �N � nodes and
m = �A� arcs, a measure matrix �cij � is the n× n array
in which element cij denotes the length of arc �i� j�
with tail i and head j . cij != 	 if �i� j�  A. A walk
is a sequence of r nodes �n1�n2� � � � �nr � composed of
�r − 1� arcs, �nk−1�nk�, where 2 ≤ k ≤ r . A path is a
walk without repeated nodes. A cycle is a walk with-
out repeated nodes, except that the starting and end-
ing nodes are the same. The length of a path (cycle)
is the sum of the lengths of its arcs. When we refer
to a shortest path tree with root t, we mean a tree
rooted at a sink node t in which all the tree arcs point
toward t.
The distance matrix �xij � is an n× n array in which

xij records the length of a path from i to j . Let �succij �
denote an n× n successor matrix in which succij rep-
resents the node that immediately follows i in a path
from i to j . We could construct a path from i to j
by tracing the successor matrix. In particular, suppose
that i→ k1 → k2 → ·· ·→ kr → j is a path in G from i
to j , then k1 = succij , k2 = succk1j � � � � � kr = succkr−1j , and
j = succkr j . Let x

∗
ij denote the shortest distance from i

to j in G, and let succ∗ij denote the successor of i on
the shortest path.
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A triple comparison s → k → t, which compares
xsk+ xkt with xst , is a process to update the length
of arc �s� t� to be min�xst� xsk + xkt� or to add a fill-in
arc �s� t� to the original graph with a length equal to
xsk+xkt , if �s� t�A. Because shortest path algorithms
operate by performing sequences of triple compar-
isons (Carré 1971), we can measure the efficiency of
algorithms by counting the number of triple compar-
isons they perform.
We say that node i is higher (lower) than node j if

the indices satisfy i > j (i < j). A node i in a set LIST
is said to be the highest (lowest) node in LIST if i ≥ k
�i ≤ k� ∀k ∈ LIST. An arc �i� j� is pointing downwards
(upwards) if i > j �i < j� (see Figure 1).
Define an induced subgraph denoted H�S� on the

node set S, which contains only arcs �i� j� of G with
both ends i and j in S. Let a < b and �a� b� denote
the set of nodes �a� �a + 1�� � � � � �b − 1�� b�. Figure 1
illustrates examples of H��a� b�� and H��1� a� ∪ b�.
Thus, H��1�n�� ≡ G and can be decomposed into
three subgraphs for any given OD pair �s� t�:
(1) H��1�min�s� t�� ∪ max�s� t��; (2) H��min�s� t��
max�s� t���; and (3) H�min�s� t�∪ �max�s� t��n��. Thus,
any shortest path in G from s to t is the shortest path
among these three induced subgraphs. This paper
gives an algebraic algorithm that systematically calcu-
lates shortest paths for these cases to obtain a shortest
path in G from s to t.
Inspired by Carré’s algorithm, we propose Algo-

rithm DLU , which further reduces computations
required for MPSP problems. We use the name DLU
for our algorithm because it contains procedures sim-
ilar to the LU decomposition in Carré’s algorithm
and is more suitable for dense graphs. Not only can
our algorithm decompose a MPSP problem as Carré’s
algorithm does, it can also compute the requested
OD shortest distances without the need of shortest
path trees as required by Carré’s algorithm. Therefore,
our algorithm saves computational work over other
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Figure 1 Illustration of Node Ordering and Subgraphs H��2�4��,
H��1�3�∪ 5�

APSP algorithms and is advantageous for problems
in which only distances (not paths) are required. For
problems that require tracing of shortest path for a
particular OD pair �s� t�, DLU traces a shortest path
without the need of computing the entire shortest
path tree.

2. Algorithm DLU
Given a set of q requested OD pairs Q != ��si� ti�! i =
1� � � � � q�, Algorithm DLU first initializes �xij � != �cij �
and �succij � != �j�, and then performs two procedures:
(1) A_LU ; and (2) Get_D�si� ti� for i = 1� � � � � q. In
particular, to find a shortest path in G from s to t,
A_LU first calculates a shortest path in the subgraph
H��1�min�s� t��∪max�s� t��, and then Get_D�s� t� fur-
ther considers the subgraphs H��min�s� t��max�s� t���
and H�min�s� t�∪�max�s� t��n�� to find a shortest path
in G. Details about each procedure are discussed in
the following sections.

Algorithm 1 DLU�Q != ��si� ti�! i= 1� � � � � q��
begin
Initialize �xij � and �succij �;
A_LU*
for i= 1 to q do
Get_D�si� ti�;
if shortest paths need to be traced then
if xsiti 
= 	 then
Get_P�si� ti�;

else there exists no path from si to ti
end

2.1. Procedure A_LU
The first procedure, A_LU , resembles the LU decom-
position in Gaussian elimination. In the kth iteration
of LU decomposition in Gaussian elimination, we use
diagonal entry �k� k� to eliminate entry �k� t� for each
t > k. This updates the �n−k�× �n−k� submatrix and
creates fill-ins. Similarly, A_LU sequentially uses each
node k = 1� � � � � �n − 2� as an intermediate node to
check whether to update each entry �s� t� of �xij � and
�succij � for all k < s ≤ n and k < t ≤ n. An update is per-
formed whenever xsk <	, xkt <	, and xst > xsk + xkt .
Figure 2(a) illustrates the operations of A_LU on a
5-node graph. It sequentially uses nodes 1, 2, and 3
as intermediate nodes to update the remaining 4× 4,
3× 3, and 2× 2 submatrix of �xij � and �succij �.
Graphically speaking, A_LU can be viewed as

a process of constructing an augmented graph G′

obtained by either adding fill-in arcs or changing
some arc lengths on the original graph when bet-
ter paths are identified using intermediate nodes. In
A_LU only intermediate nodes with indices smaller
than both end nodes of the path are considered. For
example, in Figure 3, A_LU adds fill-in arc �2�3�
because 2→ 1→ 3 is a shorter path than the direct
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Figure 2 Solving a Three Pairs Shortest Path Problem on a Five-Node
Graph by Algorithm DLU�Q�

arc from node 2 to node 3 (infinity, in this case). Sim-
ilarly, the procedure also adds fill-in arcs�3�4�, �4�5�
and modifies the length of original arc �4�3�.

Procedure A_LU
begin
for k= 1 to n− 1 do
for s = k+ 1 to n do
for t = k+ 1 to n do
if s = t and xsk+ xkt < 0 then
Found a negative cycle; STOP

if s 
= t and xst > xsk+ xkt then
xst != xsk+ xkt ; succst != succsk;

end

A_LU performs triple comparisons s → k→ t for
each s ∈ �2�n�, t ∈ �2�n� and for each k = 1� � � � �
�min�s� t�−1�. In particular, for every node pair �s� t�,
shortest paths in H��1�min�s� t�� ∪max�s� t�� will be
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computed, and thus xn�n−1 = x∗n�n−1 and xn−1�n = x∗n−1�n
because H��1�n− 1�∪n�=G (see Corollary 2).

Theorem 1. After Procedure A_LU is performed, �xst�
represents the length of the shortest path from s to t in
H��1�min�s� t�� ∪max�s� t��. That is, A_LU calculates
the shortest path from s to t using only intermediate nodes
with indices less than both s and t.

Proof. Suppose such a shortest path in G from s
to t contains p arcs. In the case of p = 1, the result is
trivial. Let us consider the case of p > 1. That is, s !=
v0→ v1→ v2→·· ·→ vp−2→ vp−1→ vp != t is a short-
est path in G from s to t with p arcs and with �p− 1�
intermediate nodes whose indices are all smaller than
min�s� t�.
Let v. <min�s� t� be the lowest node in this short-

est path. In the k= v. iteration, A_LU will modify the
length of arc �v.−1�v.+1� (or add this arc, if it does not
exist in G′) to the sum of the arc lengths of �v.−1�v.�
and �v.�v.+1�. Thus, we obtain another path s →
v1 → ·· · → v.−1 → v.+1 → ·· · → vp−1 → t with �p− 1�
arcs that is as short as the previous one. Next, A_LU
repeats the same procedure that eliminates the new
lowest node and constructs another path that is just as
short, but contains one fewer arc. By induction, in the
k =min�s� t� iteration, A_LU eventually modifies (or
adds if �s� t�  A) arc �s� t� with length equal to that
of the shortest path from s to t in H��1�min�s� t�� ∪
max�s� t��.
Therefore, any arc �s� t� in G′ corresponds to a

shortest path in H��1�min�s� t��∪max�s� t�� from s to t
with length xst . Because any shortest path in G from s
to t that passes through only intermediate nodes
with indices smaller than min�s� t� corresponds to
the same shortest path in H��1�min�s� t��∪max�s� t��,
Procedure A_LU correctly computes the length of
such a shortest path and stores it as the length of arc
�s� t� in G′. �

Corollary 2. (a) Procedure A_LU will correctly com-
pute x∗n�n−1 and x∗n−1�n.
(b) For every node pair �s� t�, Procedure A_LU will

correctly compute shortest paths in H��1�min�s� t�� ∪
max�s� t��.

Proof. (a) This follows immediately from Theo-
rem 1 because all other nodes have indices less than
�n− 1� and n, so H��1�n− 1�∪n�=G.
(b) This follows immediately from Theorem 1. �

The next result demonstrates that any negative
cycle will also be identified in Procedure A_LU .

Theorem 3. Procedure A_LU will identify the presence
of a negative cycle in G if one exists.

Proof. Suppose that there exists a p-node cycle Cp,
i1 → i2 → i3 → ·· · → ip → i1, with negative length.
Without loss of generality, let i1 be the lowest node
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in Cp, ir be the second lowest, is be the second highest,
and it be the highest. Let length�Cp� denote the length
function of cycle Cp. Because Cp is a negative cycle,
length�Cp�=

∑
�i� j�∈Cp cij < 0.

In A_LU , before we begin iteration k= i1 (using i1
as the intermediate node), the length of some arcs
of Cp might have already been modified, but no arcs
of Cp will have been removed nor will length�Cp�
have increased. After iteration k = i1, the updated
graph contains a cycle Cp−1 which skips i1, connects
ip and i2 by arc �ip� i2�, and contains one fewer arc
than Cp. In particular, Cp−1 is ip → i2→·· ·→ ip−1→ ip,
and length�Cp−1� = length�Cp� − �xi1i2 + xipi1 − xipi2�.
Because xipi2 ≤ xi1i2 + xipi1 by the algorithm, we obtain
length�Cp−1� ≤ length�Cp� < 0. The lowest-index node
in Cp−1 is now ir , and we will again reduce the size of
Cp−1 by 1 in iteration k= ir .
We iterate this procedure, each time processing

the current lowest node in the cycle and reducing
the cycle size by 1, until finally a 2-node cycle C2,
is → it → is , with length�C2� ≤ length�C3� ≤ · · · ≤
length�Cp� < 0 is obtained. Therefore, xss < 0 and a neg-
ative cycle in the augmented graph G′ is identified
with cycle length smaller than or equal to the original
negative cycle Cp. �

Thus, A_LU identifies the presence of a negative
cycle, if one exists. (Note that the specific nega-
tive cycle can be recovered using Procedure Get_P
described in §2.3.) It also computes the shortest dis-
tance in H��1�min�s� t�� ∪max�s� t�� from each node
s ∈ N to each node t ∈ N\�s�. In other words,
this procedure computes shortest path lengths for
those requested OD pairs �s� t� whose shortest paths
have all intermediate nodes with indices lower than
min�s� t�.

2.2. Procedure Get_D�si� ti�
Given an OD pair �si� ti�, this procedure contains
three subprocedures: Get_D_L�ti�, Get_D_U�si�, and
Min_add�si� ti�.

Procedure Get_D�si� ti�
begin
Get_D_L�ti�*
Get_D_U�si�*
Min_add�si� ti�;

end
Subprocedure Get_D_L�ti�
begin
for s = ti+ 2 to n do
for k= ti+ 1 to s− 1 do
if xsti > xsk+ xkti then
xsti != xsk+ xkti ; succsti != succsk;

end
Subprocedure Get_D_U�si�
begin
for t = si+ 2 to n do

for k= si+ 1 to t− 1 do
if xsit > xsik+ xkt then
xsit != xsik+ xkt ; succsit != succsik;

end
Subprocedure Min_add�si� ti�
begin
ri !=max�si� ti�*
for k= ri+ 1 to n do
if xsiti > xsik+ xkti then
xsiti != xsik+ xkti ; succsiti != succsik;

end

The lower and upper triangular parts of �xij �
induce two acyclic subgraphs, G′

L and G
′
U , of aug-

mented graph G′. G′
L (G

′
U ) contains all the down-

ward (upward) arcs of G′. The arcs can be easily iden-
tified by drawing the nodes in ascending order of
their indices from left to right as illustrated in Fig-
ure 3. Graphically, Get_D_L�ti� and Get_D_U�si� com-
pute the shortest path tree to ti in G′

L and from si
in G′

U , respectively. Min_add�si� ti� then merges the
resulting two shortest trees and computes x∗siti in the
original graph G.
Get_D_L�ti� resembles the forward step in Gaussian

elimination. It performs triple comparisons to update
xsti != min�xsti � xsk + xkti � for each k = �ti + 1�� � � � �
�s − 1�, and for each s = �ti + 2�� � � � �n. Because G′

L

is acyclic, the updated xsti for each s = �ti+ 2�� � � � �n
corresponds to the shortest distance in G′

L from
each node s > ti to ti, which in fact corresponds to
the shortest distance in H��1� s�� from s to ti (see
Corollary 5(a)).
Get_D_U�si� is similar to Get_D_L�ti�, except it

is applied to the upper-triangular part of �xij �
and �succij �. Thus, it is applied to the induced sub-
graph G′

U . Get_D_U�si� updates xsit for each t = �si +
2�� � � � �n. The updated xsit corresponds to the short-
est distance in G′

U from node si to each node t > si,
which in fact corresponds to the shortest distance in
H��1� t�� from si to t (see Corollary 5(b)).
Let ri = max�si� ti�. After running Get_D_U�si�

and Get_D_L�ti�, the shortest distance in H��1� ri��
from si to ti is computed. Min_add�si� ti� continues
the remaining triple comparisons necessary to com-
pute x∗siti in G. In particular, it computes the length
of the shortest paths in H��1� ri� ∪ k� that must pass
through an intermediate node k by adding xsik and xkti
for each k = �ri + 1� to n, and then computes x∗siti =
mink>ri �xsiti � xsik+ xkti � (see Corollary 7).
Theorem 4. (a) A shortest path in H��1� s�� from node

s > t to node t corresponds to a shortest path in G′
L from

s to t.
(b) A shortest path in H��1� t�� from node s < t to node t

corresponds to a shortest path in G′
U from s to t.

Proof. (a) Suppose that a shortest path in G from
node s > t to node t contains p arcs. In the case
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where p = 1, the result is trivial. Let us consider the
case where p > 1. That is, s→ v1→ v2→·· ·→ vp−2→
vp−1 → t is a shortest path in G from node s > t to
node t with �p− 1� intermediate nodes whose indices
are smaller than max�s� t�= s.
In the case where every intermediate node has

an index smaller than min�s� t� = t < s, Theorem 1
already shows that A_LU will compute such a short-
est path and store it as arc �s� t� in G′

L. So, we only
need to discuss the case where there exists some inter-
mediate node with an index in the range �t+1� s−1�.
Suppose that the shortest path contains two inter-

mediate nodes i and j such that all nodes k in the
path between i and j have smaller indices than i and j
(i.e., k < i and k < j). Then, A_LU will have already
updated the distance between i and j to reflect this
segment of the path. Therefore, without loss of gen-
erality, we can look at just the r intermediate nodes
�ui! i = 1� � � � � r� in the shortest path in G from s to t
such that s != u0 >u1 >u2 > · · ·>ur−1 >ur > ur+1 != t.
In essence, we break the shortest path into �r + 1�
segments u0 to u1�u1 to u2� � � � � and ur to ur+1. Each
shortest path segment uk−1 → uk in G contains inter-
mediate nodes that all have lower indices than uk.
Because Theorem 1 guarantees that A_LU will pro-
duce an arc �uk−1�uk� for any shortest path segment
uk−1→ uk and G′

L is acyclic, the original shortest path
s → v1 → v2 → ·· · → vp−2 → vp−1 → t in G will be
reduced to the shortest path s → u1 → u2 → ·· · →
ur−1→ ur → j in G′

L.
(b) Using an argument similar to (a) above, the

result follows immediately. �

Corollary 5. (a) After Procedure A_LU has run,
subprocedure Get_D_L�ti� will correctly compute shortest
paths in H��1� s�� for all node pairs �s� ti� such that s > ti.
(b) After Procedure A_LU has run, subprocedure

Get_D_U�si� will correctly compute shortest paths in
H��1� t�� for all node pairs �si� t� such that t > si.

Proof. (a) Because G′
L is acyclic, subprocedure

Get_D_L�ti� computes the shortest path tree in G′
L

rooted at node ti. By Theorem 4(a), a shortest path in
G′
L from node s > ti to node ti corresponds to a short-
est path in G from s to ti. So, s must be the highest
node because all other nodes in this path in G′

L have a
lower index than s. In other words, a shortest path in
G′
L corresponds to the same shortest path in H��1� s��.
Including the case of ti = �n− 1� and s = n, as dis-

cussed in Corollary 2(a), the result follows directly.
(b) Using a similar argument as in part (a), the

result again follows directly. �

Lemma 6. (a) Every shortest path in G from s to t that
has a highest h >max�s� t� can be decomposed into two
segments: a shortest path from s to h in G′

U and a shortest
path from h to t in G′

L.

(b) Given a node r where 1≤ r ≤ n, every shortest path
in G from s to t can be determined as the shortest of the
following two paths: (i) the shortest path from s to t in G
that passes through only nodes v≤ r , and (ii) the shortest
path from s to t in G that must pass through some node
v > r .

Proof. (a) This follows immediately by combining
Corollary 5(a) and 5(b).
(b) It is easy to see that every path from s to t either

must pass through some node v > r or not. Therefore,
the shortest path from s to t must be the shorter of
the minimum-length paths of each type. �

Corollary 7. After conducting A_LU , Get_D_L�ti�,
and Get_D_U�si�, subprocedure Min_add�si� ti� will cor-
rectly compute a shortest path in G for a requested OD
pair �si� ti�.

Proof. By Corollary 5, before conducting

Min_add�si� ti��

we will have obtained shortest paths in H��1� ri�� from
si to ti, where ri =max�si� ti�. To obtain the shortest
path in G from si to ti, we only need to compare
the results of Get_D_L�ti� and Get_D_U�si� with the
shortest paths that pass through node k for each k=
�ri + 1�� � � � �n. By Lemma 6(a), a shortest path can be
decomposed into two segments: from si to k in G′

U

and from k to ti in G′
L. Note that the shortest distances

of the segments xsik and xkti will have been calculated
by Get_D_U�si� and Get_D_L�ti�, respectively. Thus,
xsik+xkti corresponds to the length of the shortest path
that must pass through node k in H��1� k�� from si to
ti. Lemma 6(b) (with r = ri) shows that by computing
mink>ri �xsiti � xsik + xkti �, Min_add�si� ti� correctly com-
putes x∗siti . �

Theorem 8. Procedure Get_D�si� ti� will correctly
compute x∗siti and succ∗siti for a given OD pair �si� ti�.

Proof. This follows immediately by combining
Corollary 2(b), Corollary 5(a) and 5(b), and Corol-
lary 7. �

Figure 2(b) illustrates how Get_D�si� ti� individu-
ally solves x∗siti for each requested OD pair �si� ti�.
For example, to obtain x∗23, it first applies subpro-
cedure Get_D_U�2� to update x23, x24, and x25, then
updates x43 and x53 using subprocedure Get_D_L�3�.
Finally, Get_D�2�3� computes min�x23� �x24 + x43��
�x25+ x53�� which gives x∗23.
Note that the correctness of DLU depends only on

the order in which triple comparisons are conducted,
and not on path-tracing operations. Therefore, the
algorithm is still correct even if we do not conduct
the successor updating operations. This is similar to
other algebraic algorithms such as Floyd-Warshall’s
algorithm, but is very different from the conventional
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SSSP algorithms. The consequence is that we can com-
pute a shortest path length without knowing how the
path is constructed. This is advantageous for applica-
tions that require only shortest distances and not the
specific shortest paths.
If, on the other hand, an entire shortest path from s

to t needs to be traced, the following procedure
Get_P�s� t� will iteratively compute all the intermedi-
ate nodes in a shortest path from s to t.

2.3. Procedure Get_P�si� ti�
DLU does only the necessary computations to get the
shortest distance for each requested OD pair �si� ti�.
Procedure Get_P�si� ti� traces the shortest paths calcu-
lated by the rest of the algorithm. Note that if only
the distances (not the paths themselves) are required,
this procedure may be skipped.

Procedure Get_P�si� ti�
begin
let k != succsiti ;
while k 
= ti do
Get_D�k� ti�*
let k != succkti

end

Procedure Get_P�si� ti� iteratively calls procedure
Get_D�k� ti� to update xkti and succkti for every node k
that lies on the shortest path from si to ti. In particu-
lar, starting from the successor of the origin node si,
we check whether it coincides with the destination ti.
If not, we update its shortest distance and successor,
and then visit the successor. We iterate this procedure
until, eventually, the destination ti is encountered.
Because each intermediate node on this path has cor-
rect shortest distance and successor (by the correct-
ness of procedure Get_D (see Theorem 8)), an entire
shortest path is obtained.
For example, suppose that 1 → 3 → 5 → 4 is a

shortest path from node 1 to node 4 in Figure 2(c).
DLU first computes x∗14 and succ

∗
14. Because succ

∗
14 = 3,

which means node 3 is the successor of node 1 in this
shortest path, the next values to be computed are x∗34
and succ∗34. Finally, because succ

∗
34 = 5, it computes x∗54

and succ∗54. Node 5 is the last intermediate node in
the shortest path because succ∗54 = 4. Thus, procedure
Get_P�1�4� gives all the intermediate nodes and their
shortest distances to the sink node 4.
To obtain a shortest path tree rooted at sink node t,

we set Q != ��i� t�! i 
= t� i = 1� � � � �n�. Setting Q !=
��i� j�! i 
= j� i = 1� � � � �n� j = 1� � � � �n� is sufficient to
solve an APSP problem.

2.4. Complexity and Implementation of
Algorithm DLU

For an instance of MPSP where Q = ��si� ti�! i =
1� � � � � q�, let �Qs� denote the size of the requested

origin node set Qs != �si! i = 1� � � � � q� and let �Qt�
denote the size of the requested destination node
set Qt != �ti! i = 1� � � � � q�. DLU performs one iter-
ation of Procedure A_LU , q iterations of procedure
Get_D, which includes �Qt� iterations of subproce-
dure Get_D_L and �Qs� iterations of subprocedure
Get_D_U , and q iterations of subprocedure Min_add.
In particular, Procedure A_LU performs

n−2∑

k=1

n∑

s=k+1

n∑

t=k+1� s 
=t
�1�= 1

3n�n− 1��n− 2�

triple comparisons, if we skip the triple comparisons
for self-loops. �Qt� iterations of Get_D_L require

∑

t∈Qt

n∑

s=t+2

s−1∑

k=t+1
�1�= 1

2

∑

t∈Qt
�n− ti��n− ti− 1�

triple comparisons. �Qs� iterations of Get_D_U require
∑

s∈Qs

n∑

t=s+2

t−1∑

k=s+1
�1�= 1

2

∑

s∈Qs
�n− si��n− si− 1�

triple comparisons. Finally, q iterations of Min_add
require

∑

�si� ti�∈Q

n∑

k=ri+1
�1�= ∑

�si� ti�∈Q
�n− ri�

triple comparisons, where ri !=max�si� ti�.
Thus, DLU has an O�n3� worst-case complexity.

When solving an APSP problem on a complete
graph Kn, DLU performs n�n− 1��n− 2� triple com-
parisons, which Nakamori (1972) has shown to be
the minimum. Of these n�n− 1��n− 2� triple compar-
isons, 1/3 is contributed by Procedure A_LU , and 2/3
by Get_D (1/6 by Get_D_U , 1/6 by Get_D_L, and 1/3
by Min_add). Floyd-Warshall and Carré’s algorithms
also perform the same amount of triple compar-
isons, and are better than most SSSP algorithms; label-
setting algorithms require O�n3� and label-correcting
algorithms require O�n4�. For problems on acyclic
graphs, we can reorder the nodes so that the upper (or
lower) triangular part of �xij � becomes empty and only
Procedure A_LU and either subprocedure Get_D_L or
Get_D_U is required.
For sparse graphs, node ordering plays an impor-

tant role in the efficiency of the algorithm. A bad
node ordering will incur more fill-in arcs, similar to
the fill-ins required in Gaussian elimination. Com-
puting an ordering that minimizes the fill-ins is
NP -complete (Rose and Tarjan 1978). Nevertheless,
many fill-in reducing techniques such as Markowitz’s
(1957) rule, minimum degree method, and nested dis-
section method (see Duff, Erisman, and Reid 1989,
Chapter 8) used in solving systems of linear equations
can be exploited here to speed up DLU . Because our
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algorithm does computations on higher nodes before
lower nodes, optimal distances can be obtained for
higher nodes earlier than lower nodes. Thus, reorder-
ing the nodes so that the endpoints of the requested
OD pairs have higher indices may also shorten the
computational time, although such an ordering might
incur more fill-in arcs. More details about the impact
of node ordering will be discussed in a forthcoming
paper (Wang 2005). Here, we use a predefined node
ordering to start our algorithm.
Although DLU is an algebraic algorithm, its

“graphical” implementation might greatly improve its
practical efficiency. In particular, A_LU constructs an
augmented graph G′ (see Figure 3). We can use arc-
adjacency lists to record the nontrivial entries (i.e.,
finite entries). If G′ is sparse (i.e., with few fill-in
arcs), then the shortest path computations of Get_D_L
and Get_D_U on its acyclic subgraphs G′

L and G
′
U

can be efficiently implemented to avoid many triv-
ial triple comparisons the algebraic algorithms must
perform. Note that the efficiency of subprocedures
Get_D_L and Get_D_U depends on the sparsity of
augmented graph G′. Therefore, any fill-in reduction
techniques discussed in the previous paragraph will
not only reduce the running time of A_LU , but also
make Get_D_L and Get_D_U faster.
Note that we may avoid repeated computation

in Get_D_L�ti� and Get_D_U�si� if some OD pairs
in Q share the same origin node si or destination
node ti. Similarly, we may avoid repeated compu-
tations for some intermediate nodes when tracing a
shortest path from si to ti with Get_P . Thus, when
solving an APSP problem, the complexity bound on
Get_P remains O�n3� because it applies Get_D_L and
Get_D_U (both take O�n2� time) at most n times.
Note that Min_add�s� t� for each s = 1� � � � �n and
t = 1� � � � �n takes O�n3� time as well.
In general, when solving an MPSP problem with

q < n2 OD pairs, DLU saves computational work com-
pared to other algebraic algorithms. Unlike Carré’s
algorithm and label-correcting algorithms, which
have to compute an entire shortest path tree rooted
at t to trace a shortest path for a specific OD pair
�s� t�, DLU can retrieve such a path by successively
traversing each intermediate node on that path. Thus,
it is more efficient.
Next, we will give examples, including both dense

and sparse graphs, to show the superiority of our
algorithm over the APSP and SSSP algorithms.

3. Preliminary Computational
Experiments

In this section, we show that our algorithm requires
less computational effort than APSP or SSSP algo-
rithms for many instances of MPSP. In addition to

showing that our algorithm performs better on a class
of dense graphs for which we can explicitly count
triple comparisons, we also show that our algorithm
is empirically superior by testing it on artificial grid
networks and real airline flight networks. Our algo-
rithm requires fewer triple comparisons and (conse-
quently) less running time than the APSP and SSSP
algorithms.
First, we present a class of graphs where our algo-

rithm dominates the others. Consider a complete
graph Kn, n≥ 4, which contains no negative cycle but
may have negative arc lengths. Suppose that we want
to compute the shortest distance for n requested OD
pairs ��1�n�� �2�n−1�� �3�n−2�� � � � � �n/2−1�n/2+2�,
�n/2�n/2 + 1�, �n/2 + 1�n/2�, �n/2 + 2�n/2 − 1�� � � � �
�n − 1�2�� �n�1��. The Floyd-Warshall algorithm
requires �n − 1�2�n − 2� + �n − 2� triple comparisons;
label-correcting SSSP algorithms also solve this MPSP
as an APSP that takes O�n4�. On the other hand, DLU
requires �2/3�n�n − 1��n − 2� triple comparisons in
A_LU , Get_D_L, and Get_D_U , and only �1/4�n�n−2�
triple comparisons in Min_add.
Compared with the Floyd-Warshall algorithm, DLU

saves �1/12��4n3−27n2+62n−24� triple comparisons
when n≥ 4. DLU is also more efficient than the O�n4�
label-correcting SSSP algorithms.
We also compare DLU with implementations

of other shortest path algorithms in Cherkassky,
Goldberg, and Radzik (1996) to study DLU ’s practical
efficiency on several classes of artificially generated
grid networks and real flight networks that are both
airline specific and region specific.
We use nine SSSP C codes (five label-correcting

and four label-setting codes) written by Cherkassky,
Goldberg, and Radzik (1996) with slight modification
so that they can read the requested destination node
set, Qt , and then calculate shortest path trees rooted at
each requested destination node in Qt . Table 1 sum-
marizes these SSSP codes.
We first evaluate the performance of DLU and other

SSSP algorithms for solving MPSP problems with
�Qt� = �Qs� = 75%�N � on two families of artificial grid
networks (SPGRID-SQ and SPGRID-WL) generated
by SPGRID, an artificial network generator written
by Cherkassky, Goldberg, and Radzik (1996). SPGRID
generates grid-like networks with X × Y grid nodes
plus a super node. By changing X and Y we can
specify the grid shape to be square (SPGRID-SQ), or
wide or long (SPGRID-WL). We specify the degree to
be 3 and arc lengths to range from 103 to 104, and
then generate 8 square, 4 wide, and 4 long random
grid networks. Each entry in the tables shows the per-
formance of the algorithm as a ratio of its running
time, or number of triple comparisons, to that of the
fastest algorithm. Table 2 shows that label-correcting
codes TWOQ, PAPE, and BFP perform the best on
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Table 1 Summary of the 10 Algorithms Tested

Algorithm Implementation description Complexity∗ References

Label-correcting codes
GOR1 Topological ordering with distance updates O�nm� Goldberg and Radzik (1993)
BFP Queue implementation with parent checking O�nm� Cherkassky, Goldberg, and Radzik (1996)
THRESH Hybrid of Bellman-Ford and Dijkstra’s algorithm O�nm� Glover, Glover, and Klingman (1984)
PAPE Maintaining candidate lists as a stack and a queue O�n2n� Pape (1974)
TWOQ Maintaining candidate lists as two queues O�n2m� Pallottino (1984)

Label-setting codes Dijkstra’s algorithm
DIKH k-ary heap implementation with k = 3 O�m logn� Johnson (1972)
DIKBD Double buckets implementation O�m+ n��+C/��� Cherkassky, Goldberg, and Radzik (1996)
DIKR Radix-heap implementation O�m+ n logC� Ahuja et al. (1990)
DIKBA Approximate buckets implementation O�m�+ n��+C/��� Cherkassky, Goldberg, and Radzik (1996)

∗C =max�i� j�∈A��cij �!; � is a fixed parameter.

this SPGRID-SQ family. Dijkstra-based codes perform
relatively worse for smaller networks. DIKBD per-
forms slightly worse than THRESH, but is the fastest
of Dijkstra’s codes. DLU performs similarly to GOR1,
but is faster than DIKH and DIKR most of the time.
Table 3 shows that label-correcting codes TWOQ,

PAPE, and BFP perform the best on this SPGRID-WL
family. THRESH is slightly worse than BFP . DIKBD
is the fastest Dijkstra’s code, but DIKBA catches up
for larger LONG cases. DLU is faster in the WIDE
cases, and is slightly better than GOR1. DLU also
beats DIKH and DIKR. DIKR performs the worst for
the WIDE cases, but DIKH performs the worst for the
LONG cases.
On random grid networks with dense demands

DLU is not the fastest MPSP algorithm. However, on
real-life airline networks DLU performs much better.
To determine how DLU performs when solving

MPSP problems on real transportation networks, we
used data based on annual worldwide-flight sched-
ules to create networks for six international airlines
(denoted as A1, A2, A3, A4, A5, and A6). We also cre-
ate networks for six geographic regions (denoted as
R1, R2, R3, R4, R5, and R6), incorporating all flights
over all airlines within each region. The number of
nodes and arcs for these 12 graphs are listed in
Table 4. The networks are sparse because their aver-
age degree ��N �/�A�� is between 3 and 6. For each

Table 2 Normalized Running Time for a �Qt � = 75%�N� MPSP Problem on SPGRID-SQ

Grid/deg DLU GOR1 BFP THRESH PAPE TWOQ DIKH DIKBD DIKR DIKBA

10× 10/3 6$20 5$50 1$30 3$30 1$10 1$00 7$30 6$10 10$90 26$10
20× 20/3 3$73 5$04 1$18 2$58 1$08 1$00 8$01 4$40 9$43 11$84
30× 30/3 3$79 4$27 1$13 2$01 1$05 1$00 6$82 3$27 7$15 6$52
40× 40/3 10$74 4$56 1$12 2$15 1$05 1$00 7$18 3$24 7$14 5$22
50× 50/3 5$05 5$11 1$13 2$04 1$04 1$00 7$27 3$09 6$81 4$56
60× 60/3 5$07 5$24 1$13 1$95 1$03 1$00 6$92 2$91 6$37 3$88
70× 70/3 5$84 4$67 1$14 2$13 1$05 1$00 7$35 3$04 6$62 3$73
80× 80/3 9$91 5$65 1$14 2$14 1$05 1$00 7$54 3$05 6$55 3$54

graph, we randomly generate two sets of requested
OD pairs which contain �Qt� = �Qs� = 100%�N � and
�Qt� = �Qs� = 50%�N � distinct destinations, respec-
tively. In other words, to solve a �Qt� = �Qs� = 50%�N �
MPSP problem, all SSSP algorithms have to perform
50%�N � shortest path tree computations.
We use both running time and number of triple

comparisons to measure the algorithmic efficiency. We
state the normalized results for running time (see
Tables 5 and 6) and the number of triple comparisons
(see Tables 7 and 8) on these 12 graphs.
These computational results show that our algo-

rithm DLU beats all of the other algorithms (the
Floyd-Warshall algorithm (FW ), label-correcting algo-
rithms (GOR1, BFP , PAPE, and TWOQ), label-setting
algorithms (DIKH , DIKBD, DIKR, and DIKBA), and
their hybrid (THRESH)) when solving MPSP prob-
lems on real-flight networks. DLU also performs the
least number of triple comparisons in all the cases
tested. Because the SSSP algorithms we imported
from Cherkassky, Goldberg, and Radzik (1996) are
considered to be very efficient, the computational
results suggest that DLU is efficient in solving real-
world MPSP problems.

4. Conclusions
In this paper, we propose a new algorithm called DLU
that is suitable for solving MPSP problems.Although
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Table 3 Normalized Running Time for a �Qt � = 75%�N� MPSP Problem on SPGRID-WL

Grid/deg DLU GOR1 BFP THRESH PAPE TWOQ DIKH DIKBD DIKR DIKBA

16× 64/3 3.50 4.38 1.09 2.05 1.05 1.00 6$22 3.88 8.42 9.69
16× 128/3 3.59 5.15 1.12 1.99 1.05 1.00 5$82 3.61 8.20 8.12
16× 256/3 4.46 4.90 1.10 2.03 1.05 1.00 5$76 3.70 8.49 7.83
16× 512/3 3.18 5.60 1.09 2.04 1.03 1.00 5$41 3.53 8.33 7.24
64× 16/3 3.69 4.81 1.13 2.22 1.06 1.00 8$39 3.25 6.78 5.60
128× 16/3 3.76 4.97 1.15 2.02 1.03 1.00 8$46 2.90 5.78 3.68
256× 16/3 4.85 4.86 1.12 1.93 1.03 1.00 9$61 2.98 5.77 3.27
512× 16/3 5.00 5.06 1.15 1.80 1.04 1.00 10$62 2.97 5.64 3.02

its worst-case complexity O�n3� is equivalent to
other algebraic APSP algorithms, for instance, Floyd-
Warshall (Floyd 1962, Warshall 1962) and Carré’s
(1969, 1971) algorithms, DLU can, in practice, avoid
significant computational work in solving MPSP prob-
lems. Algorithm DLU can deal with graphs containing
negative arc lengths and detect negative cycles earlier
than the Floyd-Warshall algorithm. It also saves stor-
age and computational work for problems with special
structures such as undirected or acyclic graphs.
DLU attacks each requested OD pair individually,

so it is more suitable for problems with a scattered
OD distribution. In extreme cases, it is especially effi-
cient for solving MPSP instances in which there are
exactly n OD pairs �si� ti� corresponding to a match-
ing in N ×N . That is, each node appears exactly once
in each of the source and sink node sets, but not in
the same OD pair. Such an MPSP problem requires
as much work as an APSP problem for most short-
est path algorithms known nowadays, even though
only n OD pairs are requested.
When solving MPSP problems, DLU may be sensi-

tive to the distribution of requested OD pairs and the
node ordering. In particular, when the requested OD
pairs are closely distributed in the right lower part of
the n× n OD matrix, Algorithm DLU can terminate
much earlier. On the other hand, scattered OD pairs
might make the algorithm less efficient, although it
will still be better than other APSP algorithms. A bad
node ordering may incur many “fill-ins.” These fill-
ins make the modified graph denser, which in turn
will require more triple comparisons when applying
our algorithm. These difficulties may be resolved by
reordering the node indices so that the requested OD
pairs are grouped in a favored distribution or the cre-
ation of fill-in arcs is decreased.
Because DLU can often terminate much sooner,

given a favorable node ordering, the algorithm can

Table 4 Size of 12 Flight Networks

A1 A2 A3 A4 A5 A6 R1 R2 R3 R4 R5 R6

�N� 175 229 233 236 251 330 134 189 363 678 705 1�093
�A� 748 1�120 811 829 1�295 985 800 779 1�727 6�309 6�497 8�692

be especially beneficial as a subroutine in certain
iterative algorithms. For a graph with fixed topol-
ogy, where shortest paths of a fixed set of OD pairs
must be repeatedly computed with different numer-
ical values of arc lengths, DLU is especially bene-
ficial because we may do a preprocessing step to
select a node ordering that favors DLU . A speedup
is then obtained at every repetition of MPSP, even if
the arc costs change. Such problems appear often in
real-world applications. For example, when solving
the origin-destination multicommodity network flow
problem (ODMCNF) using Dantzig-Wolfe decompo-
sition and column generation (Barnhart et al. 1995),
we generate columns by solving sequences of short-
est path problems between specific OD pairs. The arc
costs change in each stage, but both the topology and
OD pairs are fixed. Another example is in the compu-
tation of parametric shortest paths where arc length is
a linear function of some parameter. We need to solve
for shortest paths repeatedly on the same graph (with
different arc costs) to determine the critical value of
the parameter.
We have shown the superiority of Algorithm DLU

over the other APSP and SSSP algorithms for solv-
ing the MPSP problem. Computational results show
that DLU performs better than SSSP and APSP algo-
rithms on real-world flight networks. A more thor-
ough computational experiment that compares the
empirical efficiency of DLU with many modern SSSP
and APSP algorithms will be conducted in our forth-
coming paper (Wang 2005). In that paper, we will
also address sparsity. Like all other algebraic algo-
rithms in the literature, DLU requires O�n2� storage,
which makes it suitable for use on dense graphs. We
have developed techniques for sparse implementa-
tion that avoid nontrivial triple comparisons and lead
to promising computational results (see Wang 2005),
but they come with the price of extra storage for the
adjacency data structures.
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Table 5 Normalized Running Time for a �Qt � = 100%�N� MPSP Problem on Flight Networks

Network DLU FW GOR1 BFP THRESH PAPE TWOQ DIKH DIKBD DIKR DIKBA

A1 1 11$83 7.17 3.28 6.56 3.06 3.22 18$06 11$72 24$67 11$17
A2 1 11$42 6.37 2.70 4.70 2.65 2.70 14$12 9$05 18$05 7$81
A3 1 12$81 6.75 3.06 5.58 2.86 3.06 17$47 10$94 22$61 9$72
A4 1 7$76 7.09 3.06 5.88 3.00 3.24 17$68 11$12 23$44 10$50
A5 1 14$40 4.86 2.00 3.31 1.80 1.88 8$76 5$92 11$10 5$61
A6 1 7$60 4.10 1.81 3.33 1.67 1.77 9$71 5$95 12$59 5$55

R1 1 6$20 3.20 1.40 2.00 1.00 1.20 3$80 3$00 5$40 3$60
R2 1 11$60 5.20 2.40 3.20 1.80 1.80 7$20 5$20 10$00 5$60
R3 1 22$53 6.35 2.71 3.65 2.47 2.65 8$47 5$76 11$53 5$47
R4 1 18$71 2.80 1.21 1.37 1.08 1.14 3$35 2$15 3$80 1$83
R5 1 18$53 2.63 1.17 1.29 1.07 1.11 3$07 2$09 3$74 1$85
R6 1 26$81 3.54 1.62 1.62 1.41 1.38 3$74 2$38 4$43 2$09

Table 6 Normalized Running Time for a �Qt � = 50%�N� MPSP Problem on Flight Networks

Network DLU FW GOR1 BFP THRESH PAPE TWOQ DIKH DIKBD DIKR DIKBA

A1 1 11.21 5$37 2.37 4.68 2.21 2.53 13$74 8$89 18$32 8$53
A2 1 14.73 6$55 2.79 4.64 2.67 2.67 13$82 8$91 17$79 7$76
A3 1 13.91 6$03 2.55 4.55 2.33 2.48 14$48 9$03 18$67 8$33
A4 1 12.48 8$43 3.86 6.95 3.57 4.05 21$24 13$29 28$29 12$24
A5 1 20.16 4$95 2.05 3.34 1.79 1.90 8$51 5$93 11$38 5$10
A6 1 10.25 3$94 1.78 3.22 1.71 1.78 9$43 5$88 12$68 4$88

R1 1 15.50 6$00 2.00 3.50 2.00 2.00 7$00 5$50 10$00 4$50
R2 1 27.50 10$00 4.00 6.50 3.50 3.50 12$50 11$00 19$50 10$00
R3 1 20.83 5$28 1.89 2.33 1.72 1.83 6$00 4$39 8$22 3$44
R4 1 25.32 2$65 1.24 1.39 1.11 1.15 3$39 2$17 3$89 1$93
R5 1 25.50 2$77 1.26 1.40 1.11 1.16 3$28 2$19 3$85 1$82
R6 1 33.92 3$31 1.53 1.48 1.31 1.37 3$68 2$35 4$20 1$82

Table 7 Normalized Number of Triple Comparisons for a �Qt � = 100%�N� MPSP Problem on Flight Networks

Network DLU FW GOR1 BFP THRESH PAPE TWOQ DIKH DIKBD DIKR DIKBA

A1 1 6$39 14$59 24$64 24$41 24$68 24$68 23$71 23$71 23$71 23$71
A2 1 6$38 17$80 24$58 23$49 25$06 25$06 22$89 22$89 22$89 22$89
A3 1 7$24 15$04 24$48 23$43 24$46 24$46 22$55 22$55 22$55 22$55
A4 1 26$18 50$83 83$41 77$87 87$63 87$63 75$33 75$33 75$33 75$33
A5 1 2$72 8$55 10$37 10$03 10$35 10$35 9$83 9$83 9$83 9$83
A6 1 7$88 11$42 21$10 20$35 21$12 21$11 20$06 20$06 20$06 20$06

R1 1 1$89 4$76 5$26 4$79 5$21 5$21 4$76 4$76 4$76 4$76
R2 1 3$47 7$05 7$83 6$78 7$69 7$68 6$76 6$76 6$76 6$76
R3 1 3$76 11$95 12$93 10$24 12$75 12$75 10$11 10$11 10$11 10$11
R4 1 1$38 3$87 4$30 3$37 4$26 4$25 3$26 3$26 3$26 3$26
R5 1 1$16 4$38 4$98 4$01 5$01 4$98 3$78 3$78 3$78 3$78
R6 1 1$67 4$92 5$55 3$98 5$52 5$38 3$77 3$77 3$77 3$77

Table 8 Normalized Number of Triple Comparisons for a �Qt � = 50%�N� MPSP Problem on Flight Networks

Network DLU FW GOR1 BFP THRESH PAPE TWOQ DIKH DIKBD DIKR DIKBA

A1 1 7$92 13$55 22$88 22$63 22$92 22$92 21$99 21$99 21$99 21$99
A2 1 8$20 17$13 23$83 22$68 24$35 24$35 22$09 22$09 22$09 22$09
A3 1 9$63 14$86 24$41 23$39 24$41 24$41 22$51 22$51 22$51 22$51
A4 1 33$00 48$07 79$02 73$65 83$11 83$11 71$21 71$21 71$21 71$21
A5 1 3$46 8$14 9$85 9$52 9$83 9$82 9$34 9$34 9$34 9$34
A6 1 10$70 11$35 21$05 20$32 21$08 21$07 20$02 20$02 20$02 20$02

R1 1 2$47 4$70 5$18 4$71 5$13 5$13 4$69 4$69 4$69 4$69
R2 1 4$57 6$99 7$74 6$72 7$61 7$61 6$69 6$69 6$69 6$69
R3 1 4$81 11$47 12$44 9$83 12$31 12$32 9$71 9$71 9$71 9$71
R4 1 1$78 3$71 4$14 3$25 4$10 4$09 3$15 3$15 3$15 3$15
R5 1 1$48 4$15 4$72 3$84 4$77 4$75 3$61 3$61 3$61 3$61
R6 1 2$12 4$66 5$27 3$79 5$22 5$10 3$59 3$59 3$59 3$59
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